Quy mô vĩ mô Chất khí

Hình ảnh tàu con thoi của giai đoạn vào lại khí quyển (re-entry)

Khi quan sát một chất khí, điển hình là xác định hệ quy chiếu hoặc thang độ dài. Thang độ dài lớn hơn tương ứng với quan điểm vĩ mô hoặc toàn cục của chất khí. Vùng này (gọi là thể tích) phải có kích thước đủ để chứa một lượng lớn các hạt khí lấy mẫu. Kết quả phân tích thống kê của cỡ mẫu này tạo ra hành vi "trung bình" (tức là vận tốc, nhiệt độ hoặc áp suất) của tất cả các hạt khí trong vùng. Ngược lại, thang độ dài nhỏ hơn tương ứng với quan điểm vi mô hoặc hạt.

Về mặt vĩ mô, các đặc tính khí đo được là về bản thân các hạt khí (vận tốc, áp suất hoặc nhiệt độ) hoặc môi trường xung quanh chúng (thể tích). Ví dụ, Robert Boyle đã nghiên cứu hóa học khí nén trong một phần nhỏ sự nghiệp của mình. Một trong những thí nghiệm của ông liên quan đến các tính chất vĩ mô của áp suất và thể tích của một chất khí. Thí nghiệm của ông đã sử dụng một áp kế ống chữ J trông giống như một ống nghiệm hình chữ J. Boyle đã nhốt một khí trơ vào đầu kín của ống nghiệm bằng một cột thủy ngân, từ đó tạo ra số lượng các hạt và nhiệt độ không thay đổi. Ông quan sát thấy rằng khi tăng áp suất trong chất khí, bằng cách đổ thêm thủy ngân vào cột, thì thể tích của chất khí bị mắc kẹt giảm xuống (điều này được gọi là mối quan hệ nghịch đảo). Hơn nữa, khi Boyle nhân áp suất và thể tích của mỗi lần quan sát, sản phẩm là không đổi. Mối quan hệ này phù hợp với mọi khí mà Boyle quan sát được dẫn đến định luật, (PV = k), được đặt tên theo tên của Boyle để tôn vinh các nghiên cứu của ông trong lĩnh vực này.

Có rất nhiều công cụ toán học có sẵn để phân tích các tính chất của khí. Khi các chất khí phải chịu các điều kiện khắc nghiệt, các công cụ này trở nên phức tạp hơn, từ các phương trình Euler cho dòng không thẩm thấu đến các phương trình Navier – Stokes [7] đến đầy đủ các hiệu ứng nhớt. Các phương trình này được điều chỉnh phù hợp với các điều kiện của hệ thống khí được đề cập. Thiết bị phòng thí nghiệm của Boyle cho phép sử dụng đại số để thu được kết quả phân tích của ông. Kết quả của ông có thể thực hiện được vì ông đang nghiên cứu các chất khí trong các tình huống áp suất tương đối thấp, nơi chúng hoạt động theo cách "lý tưởng". Những mối quan hệ lý tưởng này áp dụng cho các tính toán an toàn cho nhiều điều kiện bay khác nhau trên các vật liệu được sử dụng. Thiết bị công nghệ cao đang được sử dụng ngày nay được thiết kế để giúp chúng ta khám phá một cách an toàn các môi trường hoạt động kỳ lạ hơn, nơi các khí không còn hoạt động theo cách "lý tưởng". Toán học nâng cao này, bao gồm thống kê và phép tính đa biến, có thể đưa ra giải pháp cho các tình huống động phức tạp như việc đi lại xe không gian. Một ví dụ là phân tích hình ảnh quay lại tàu con thoi để đảm bảo các đặc tính vật liệu trong điều kiện tải này là phù hợp. Trong chế độ bay này, khí không còn hoạt động lý tưởng nữa.

Áp suất

Ký hiệu được sử dụng để biểu diễn áp suất trong phương trình là "p" hoặc "P" với đơn vị SI là pascal.

Khi mô tả một bình chứa khí, thuật ngữ áp suất (hoặc áp suất tuyệt đối) dùng để chỉ lực trung bình trên một đơn vị diện tích mà khí tác dụng lên bề mặt của bình chứa. Trong phạm vi thể tích này, đôi khi dễ dàng hình dung các hạt khí chuyển động theo đường thẳng cho đến khi chúng va chạm với bình chứa (xem sơ đồ ở đầu bài viết). Lực do một hạt khí truyền vào vật chứa trong vụ va chạm này là sự thay đổi động lượng của hạt.[8] Trong một vụ va chạm chỉ có thành phần thông thường của vận tốc thay đổi. Một hạt chuyển động song song với bức tường không thay đổi động lượng của nó. Do đó, lực trung bình trên một bề mặt phải là sự thay đổi trung bình của động lượng tuyến tính từ tất cả các vụ va chạm của các hạt khí này.

Áp suất là tổng của tất cả các thành phần thông thường của lực do các phần tử tác động vào thành bình chia cho diện tích bề mặt của thành bình.

Nhiệt độ

Ký hiệu được sử dụng để biểu diễn nhiệt độ trong phương trình là T với đơn vị SI là kelvins.

Tốc độ của một hạt khí tỷ lệ với nhiệt độ tuyệt đối của nó. Thể tích của quả bóng trong video sẽ thu nhỏ lại khi các hạt khí bị mắc kẹt chậm lại với việc bổ sung nitơ cực lạnh. Nhiệt độ của bất kỳ hệ thống vật chất nào đều liên quan đến chuyển động của các hạt (phân tử và nguyên tử) tạo nên hệ [khí].[9] Trong cơ học thống kê, nhiệt độ là thước đo của động năng trung bình được lưu trữ trong một hạt. Các phương pháp lưu trữ năng lượng này được quy định bởi bậc tự do của chính hạt (chế độ năng lượng). Động năng được thêm vào (quá trình thu nhiệt) cho các hạt khí bằng cách va chạm tạo ra chuyển động thẳng, quay và dao động. Ngược lại, một phân tử trong chất rắn chỉ có thể tăng phương thức dao động của nó khi có thêm nhiệt vì cấu trúc tinh thể mạng ngăn cản cả chuyển động thẳng và chuyển động quay. Các phân tử khí được đốt nóng này có một phạm vi tốc độ lớn hơn, liên tục thay đổi do va chạm liên tục với các hạt khác. Phạm vi tốc độ có thể được mô tả bằng phân bố Maxwell – Boltzmann. Việc sử dụng sự phân bố này ngụ ý rằng khí lý tưởng gần cân bằng nhiệt động lực học cho hệ thống các hạt đang được xem xét.

Thể tích riêng

Ký hiệu được sử dụng để biểu thị thể tích riêng trong phương trình là "v" với đơn vị SI là mét khối trên kilogam.

Ký hiệu được sử dụng để biểu diễn thể tích trong phương trình là "V" với đơn vị SI là mét khối.

Khi thực hiện một phân tích nhiệt động lực học, người ta thường nói đến các tính chất chuyên sâu và mở rộng. Các thuộc tính phụ thuộc vào lượng khí (theo khối lượng hoặc thể tích) được gọi là thuộc tính mở rộng, trong khi các thuộc tính không phụ thuộc vào lượng khí được gọi là thuộc tính thâm dụng. Thể tích cụ thể là một ví dụ về tính chất chuyên sâu vì nó là tỷ số thể tích chiếm bởi một đơn vị khối lượng của một chất khí giống nhau trong toàn hệ thống ở trạng thái cân bằng.[10] 1000 nguyên tử một chất khí chiếm cùng một không gian với bất kỳ 1000 nguyên tử nào khác ở mọi nhiệt độ và áp suất nhất định. Khái niệm này dễ hình dung hơn đối với các chất rắn như sắt không thể nén được so với chất khí. Tuy nhiên, bản thân thể tích --- không cụ thể --- là một thuộc tính mở rộng.

Mật độ / khối lượng riêng

Ký hiệu được sử dụng để biểu thị mật độ trong phương trình là ρ (rho) với đơn vị SI là kilogam trên mét khối. Thuật ngữ này là nghịch đảo của thể tích riêng.

Vì các phân tử khí có thể di chuyển tự do trong một bình chứa, khối lượng của chúng thường được đặc trưng bởi mật độ. Khối lượng riêng là lượng khối lượng trên một đơn vị thể tích của một chất, hoặc nghịch đảo của khối lượng riêng. Đối với chất khí, mật độ có thể thay đổi trong một phạm vi rộng vì các hạt tự do di chuyển lại gần nhau hơn khi bị hạn chế bởi áp suất hoặc thể tích. Sự thay đổi mật độ này được gọi là khả năng nén. Giống như áp suất và nhiệt độ, tỷ trọng là một biến trạng thái của chất khí và sự thay đổi tỷ trọng trong bất kỳ quá trình nào cũng bị chi phối bởi các định luật nhiệt động lực học. Đối với khí tĩnh, tỷ trọng là như nhau trong toàn bộ bình chứa. Mật độ do đó là một đại lượng vô hướng. Có thể chỉ ra bằng thuyết động học rằng khối lượng riêng tỷ lệ nghịch với kích thước của bình chứa trong đó một khối khí cố định bị giam giữ. Trong trường hợp này là một khối lượng cố định, khối lượng riêng giảm khi khối lượng tăng.